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1 Abstract

This report presents a novel approach to room
type classification in a domestic setting using self-
supervised learning. Our work focuses on leveraging
large pre-trained models such as MAE, DINO v2 and
SimCLR to perform downstream classification tasks
on room types. The research change the encoder of
SimCLR from CNN to ViT and compare the perfor-
mance of original SimCLR model and performance
after applied the pre-trained parameters of MEA and
dino v2 to the room type images.

2 Introduction

As the world increasingly embraces smart home tech-
nologies and automation, the need for accurate room
type classification algorithms has become paramount.
These algorithms are instrumental in enhancing home
automation, facilitating robot navigation, fortifying
security systems, and other AI applications. Our
motivation to address this challenge lies in the po-
tential improvements these systems could bring to
various domestic and commercial applications, im-
proving lives and operational efficiency.

The problem at hand involves developing a self-
supervised learning model that can accurately clas-
sify different room types in a dynamic domestic envi-
ronment using visual input. Such a model should ac-
count for factors like furniture repositioning, lighting
changes, and other environmental alterations affect-
ing room appearances. The input to our algorithm is

an image, and we leverage pre-trained self-supervised
learning models like SimCLR, MAE, and DINO v2 to
output a predicted room type, such as a living room,
kitchen, bedroom, or bathroom.

Supervised learning models currently in use require
extensive labeled datasets, which can be costly, time-
consuming, and subject to human error. Addition-
ally, these models struggle to generalize their learning
to unseen environments. To counter these challenges,
our focus is on self-supervised learning, where models
learn from unlabeled data, creating useful represen-
tations for downstream tasks. We aim to utilize these
representations to accurately classify room types in a
dynamic environment.

3 Related Work

MAE (Masked Autoencoders)[1], our baseline
model, shows a unique way of masking and recon-
structing images. It develops an asymmetric encoder-
decoder architecture, where the encoder operates the
portion of images without mask tokens and decoder
reconstructs the original image from the latent rep-
resentation and mask tokens. This autoencoder is
able to mask a high proportion of the input image
(75%) and still accelerate the training and improve
accuracy compared to many state-of-the-art models
(BEiT, ViT, MoCo).

Scene Classification[2], one of our main task, is to
classify a scene image into different predefined scene
categories based on the content, objects, and layout
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in the image provided. The current challenges in
this field includes large intraclass variations (different
lighting conditions, different angles of the images and
different objects in the content), semantic ambiguity
(many different scenes in different categories could
have the same objects/texture/backgrounds), and
computational efficiency. Zeng and Liao (2021) com-
pares between different global CNN features based
methods, spatially invariant features based methods,
semantic features based methods, multilayer feature
based methods, multiview features based methods
and reveals that FTOTLM achieves the best accuracy
out of other state-of-the-art models on three bench-
mark datasets they used.

DINO v2[3], is one of the other model we are go-
ing to use to compare with MAE baseline model.
DINO v2 is a variety of pretrained visual models,
the first method that uses self-supervised learning to
train computer vision models. Like self-supervised
learning, it does not require large amounts of labeled
data, so it solves the issue of not having enough la-
beled data to train and evaluate. It also does not
require any fine-tuning.

SimCLR[4], a simple framework for contrastive
learning of visual representations which does not re-
quire specialized architectures or a memory bank.
SimCLR shows the importance of data augmentation
and uses random corp and resize (with random flip),
color distortions, and Gaussian blur as their default
settings. And reveals that stronger data augmenta-
tion is more beneficial for unsupervised contrastive
learning compared to supervised learning.

ViT[5], is one of the encoder we choose to use as
a comparison to CNN based encoder. It is a pure
transformer applied directly to sequences of image
patches without the need for convolutional layers,
which remarkably proficient in image classification
tasks. This paper also shows that ViT attains out-
standing outcomes when comparing to state-of-the-
art convolutional networks, in addition to signifi-
cantly fewer computational resources in training.

4 Methods

The goal of this research is to explore different types
of Self-Supervised Learning methods, and see how it
works for the downstream task, which is room type
classification. The methods we explored are MAE,
DINO v2 and SimCLR. For MAE and DINO v2, since
the training volume is relative large for these models
(for example the training set of DINO v2 contains
145m images), and given limited resources and time
we have, we decided not to change the model archi-
tecture on these models and directly use their open
source pre-trained parameters for the room type clas-
sification. On the other hand, we modified the model
architecture of SimCLR, where we changed the CNN
based encoder to ViT based encoder, and trained
the model from scratch. Some detailed methodol-
ogy of these Self-Supervised learning models will be
provided below.

The SimCLR (Simple Framework for Contrastive
Learning of Visual Representations) is a self-
supervised learning model developed by Google. This
model uses contrastive learning, a methodology that
distinguishes similar (positive) and dissimilar (nega-
tive) examples from an unlabeled dataset.

Figure 1: SimCLR[4]

The pipeline of SimCLR involves four steps: Data
Augmentation: It applies two random transforma-
tions T to an input image x to obtain two correlated
views x′ and x′′, forming a positive pair. A base
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encoder network (f), often a deep Convolutional
Neural Network (CNN), maps the augmented images
to the feature space. These projections are then
passed through a projection head (g) to obtain rep-
resentations z = g(f(x′)) and z′ = g(f(x′′)). Then it
uses the NT-Xent (Normalized Temperature-scaled
Cross-Entropy) loss function. For a given positive
pair, this loss aims to maximize agreement between
z and z′ while minimizing it among all other pairs in
a mini-batch. It uses a large batch size and leverages
a temperature parameter (τ) for better performance.
Mathematically, the NT-Xent loss for a positive pair
(i, j) is given by:

L(i, j) = − log
(

exp(sim(zi,zj)/τ)∑
k ̸=i exp(sim(zi,zk)/τ)

)
where sim is the cosine similarity, and the sum in the
denominator is over all negative pairs in the batch for
i.

After computing the contrastive loss, backpropaga-
tion is performed to update the parameters of the
encoder and the projection head. The outputs of
SimCLR are representations that capture the simi-
larity of augmented views, making them useful for
various downstream tasks. While it does not provide
explicit labels, it can distinguish between similar and
dissimilar instances, giving rise to meaningful repre-
sentations for a wide range of visual recognition tasks.
SimCLR thus offers a powerful mechanism to lever-
age unlabeled data in computer vision.

In this project we change the CNN based encoder to
ViT based encoder in SimCLR. And for Vision Trans-
former (ViT), it is a model for computer vision tasks
introduced by Google Research. It is an application
of the Transformer model to perform image classifi-
cation tasks. ViT takes as input a sequence of image
patches and treats them as if they were tokens in a
text input. The process begins by partitioning an
input image into small patches, flattening them into
1D arrays, and then linearly transforming each into
a ”patch embedding”. To account for lost positional
information during flattening, positional embeddings
are added to the patch embeddings. The resulting se-
quence of patch embeddings is then passed through a

standard Transformer encoder comprised of multiple
layers of self-attention and feed-forward neural net-
works. The final output, corresponding to the em-
bedding of the first input token, is used for classi-
fication through a feed-forward network, predicting
the image’s class. ViT, though requiring more data
and computational power, has exhibited impressive
results on image classification tasks when pre-trained
on large datasets.

When changed the model architecture of SimCLR, we
used the base code from CS231n assignment 3, and
modified from there. There are two major changes:

1. Adding another Mvit class in
cs231n/simclr/model.py file to create a ViT en-
coder inside SimCLR instead of CNN.

Figure 2: Mvit Class

2. Added additional two functions:
compute train transform vit and com-
pute test transform vit to resize the image to
224 x 224 in cs231n/simclr/data utils.py since vit
only takes image with 224 x 224 resolution.

Next is MAE, useful for dimensionality reduction,
anomaly detection, or denoising. The network, com-
posed of an encoder and decoder, is trained to mini-
mize the difference between the input and the recon-
structed output. A Masked Autoencoder enhances
this by applying a binary mask to the input, setting
a portion of the input features to zero. This encour-
ages the network to learn a more robust latent rep-
resentation that capable of handling missing or cor-
rupted data. By measuring the difference between
the original input data and the reconstructed data,
the Masked Autoencoder is encouraged to learn rep-
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Figure 3: Function to Resize the Image for ViT

resentations that are insensitive to specific features
masked out during training. This makes it ideal for
tasks involving incomplete or noisy data and robust
data representation learning.

DINO V2 is a self-supervised learning model de-
signed by Facebook AI. The architecture consists
of a teacher network and a student network. The
student network learns to mimic the teacher net-
work, which evolves over time. The primary inno-
vation is the use of a dynamic teacher network that
changes over the course of training, ensuring that the
model continuously learns new representations. The

Figure 4: DINO Distillation system[6]

loss function, inspired by knowledge distillation, en-
courages the student network’s output to align with
the teacher network’s output. More precisely, for a
given input image, the student’s outputs at multiple
’views’ (transformed versions of the input) are made
to match the teacher’s output for a corresponding
view. However, a key difference with typical distilla-
tion is that a centering operation is applied on both
student’s and teacher’s output to prevent collapsed
solutions. This centering operation subtracts the av-
erage output over a mini-batch of data.

Formally, let’s denote fs and ft as the student’s and
teacher’s output functions, and v as a view of an in-
put. The loss function can be formulated as:

L(θs) = Ev∼V DKL(fs(v; θs)||ft(v)) (1)

where θs represents the student’s parameters, DKL

is the KL-divergence, and the expectation is over all
views v from a set of views V . This strategy enables
the model to learn rich, discriminative features even
in the absence of labels.

5 Dataset and Features

The dataset we used for downstream task is the NYU-
Depth V2 dataset[7]. It comprised of video sequences
from a variety of indoor scenes as recorded by both
the RGB and Depth cameras from the Microsoft
Kinect. The resolution of the image is 640 x 480.
It contains varies images of different room types. We
mainly focused on the following room types: bed-
room, bathroom, kitchen, living room, dining room,
basement. We combined the images in the same type
together. Since the raw image is in .jpg format and
the corresponding depth map of each image is in .png
format, we removed the .PNG files in each of the cate-
gories, and only keep the raw images. There are 2548
images in total after filtering. Next used ImageFolder
to load the data and transformed it into tensors, re-
sized it to 224 x 224, then used DataLoader to load
the dataset in batches and randomly shuffled the data
orders. The batch size we used is 64. Finally divided
the data into 70% of training and 30% of testing, the
random state is 42.
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For the training process of SimCLR with ViT en-
coder, initially we used CIFAR10 dataset. Because
we utilized the code from cs231n assignment 3, in
which it used CIFAR10 to train the original Sim-
CLR with CNN based encoder for 18 hours and
saved the pre-train weights. We aim to compare
the performance different between the SimCLR with
CNN based encoder and SimCLR with ViT based
encoder. Thus, we trained both models with the
same CIFAR10 dataset. The training size for ViT
based encoder of SimCLR is 50,000, and the reso-
lution is 32 x 32. We did some data augmentation
and transformations. Randomly resize and crop to
32x32. Horizontally flip the image with probabil-
ity 0.5 With a probability of 0.8, apply color jitter
With a probability of 0.2, and convert the image to
grayscale. The normalized the R, G, B channel with
their mean [0.4914, 0.4822, 0.4465] and standard de-
viation [0.2023, 0.1994, 0.2010]. These augmenta-
tion and transformation steps are aligned with the
original SimCLR model (CNN based encoder) dur-
ing the training process, except one thing needs to
be changed. Since ViT only takes images with reso-
lution 224 x 224 as its input, we need to resize the
image from 32 x 32 to 224 x 224 in the beginning of
the data augmentation and transformation process.

Next we brought the imagenet dataset and incorpo-
rate it into the training process of this ViT based
encoder for SimCLR. Since the performance of the
modified SimCLR is poor (will share more detailed
information on the results and the reason for choos-
ing another dataset in next section). Because the
huge volume of imagenet dataset, and given limited
resouces we have. We decided to use the validataion
set of imagenet to train our ViT encoder based Sim-
CLR model. The size of the validation set is 50,000,
and the average resolution is 469 x 387. The aug-
mentation and transformation processes are exactly
the same as above, except the in the normalize step
the mean [0.485, 0.456, 0.406] and std [0.229, 0.224,
0.225] for R, G, B channels changed.

6 Experiments, Results and
Discussion

6.1 Experiments

In general, there are two sets of experiment we
worked on.

1. Training the SimCLR with changing the model ar-
chitecture, with both CIFAR10 dataset and imagenet
dataset.

2. Testing on 5 different pre-trained parameters on
room type classification.

The 5 pre-trained parameters are from MAE, DINO
v2 (these two are directly downloaded from the orig-
inal models online), SimCLR (CNN based encoder)
trained with CIFAR10 dataset in 18 hours, SimCLR
(ViT based encoder) trained with CIFAR10 dataset
for 20 hours, SimCLR (ViT based encoder) trained
with val imagenet dataset for 20 hours.

First, for the training process of SimCLR with ViT
based encoder, we used CIFAR10 as the training set,
which contains 50,000 images. The batch size is 16,
since anything above 16 will give us memory over-
flow error. The optimizer is adam and the learning
rate is 0.001, which are the same as the setups in the
assignment. Since we utilized the code from the as-
signment as our base code to modify with, we did not
change these settings. We used A100 GPU to train
the modified version of SimCLR for 10 hours of 40
epochs, and then used T4 GPU to continue train it
for another 10 hours of 10 epochs in Colab, and saved
the trained weights.

Then, in order to test our hypothesis of the differ-
ence on comparing the test results of CNN based en-
coder and ViT based encoder of SimCLR. We ran
another training process on the validation set of im-
agenet with the ViT based encoder SimCLR model.
The validation set of imagenet contains 50,000 im-
ages. We kept the setups the same as training on
CIFAR10 dataset. We used T4 GPUs training for 20
hours of 20 epochs, and saved the trained weights.
The only difference is to add another ImageNetPair
class to process the val ImageNet dataset.
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Figure 5: Train Process for SimCLR(ViT) with CI-
FAR10

Figure 6: Train Process for SimCLR(ViT) with Val
Imagenet

Next, we ran the tests on room type classification of
MAE, DINO v2, SimCLR, SimCLR(ViT, CIFAR10),
SimCLR(ViT, Imagenet) based on their pre-trained
weights or saved trained weights. The steps for these
models to test on room type classification are the
same. First feed all the room type images into the
pre-trained weights, and then obtained the embed-
dings for each of the images. Next, we used a 5-fold
cross-validation with KNN classifier to apply to the

Figure 7: ImageNetPair

embeddings of these images to compute the average
accuracy score, average F1-score, average precision
score and average recall score after 5 trails. As for
the pre-trained weights, MAE and DINO v2 models
are directly downloaded online. For MAE, the weight
we chose is ”facebook/vit-mae-huge” and there are
630m parameters. For DINO v2, the weight we chose
is ’dinov2 vitl14’ and it contains 304m parameters.
For SimCLR(CNN), we used the trained weights from
the assignment, and it contains 24.3m parameters.
For SimCLR(ViT, CIFAR10), we used the weights
trained by CIFAR10, it contains 86.3m parameters.
For SimCLR(ViT, Imagenet), we used the weights
trained by validation set of Imagenet, which contains
the same 86.3m parameters.
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6.2 Results

There are 4 metrics used to assess our classification
performance.

Accuracy: This is the simplest classification metric.
It is the number of correct predictions made divided
by the total number of predictions made. It’s useful
when the target classes are well balanced.

Accuracy = TP+TN
TP+TN+FP+FN

Precision: Precision is the number of true positive
results divided by the number of all positive results
(including those not correctly identified). It measures
the proportion of actual positives was correctly clas-
sified.

Precision = TP
TP+FP

Recall (or Sensitivity): Recall is the number of true
positive results divided by the number of all samples
that should have been identified as positive. It mea-
sures the ability of the classifier to find all the positive
instances.

Recall = TP
TP+FN

F1 Score: F1 Score is the harmonic mean of Precision
and Recall and tries to balance both. It’s useful when
the class distribution is unbalanced.

F1 = 2 · Precision·Recall
Precision+Recall

In above formulas: TP is True Positives: the model
correctly predicted the positive class. TN is True
Negatives: the model correctly predicted the negative
class. FP is False Positives: the model incorrectly
predicted the positive class. FN is False Negatives:
the model incorrectly predicted the negative class.

The overall results shown in Table 1.

6.3 Discussion

As the result shown in Table 1, DINO v2 with its pre-
trained parameters gives us the best performance.
Since DINO v2 uses ViT as its encoder and also uti-
lized this student-teacher distillation technique com-
bined with a large, curated, and diverse dataset to

train the models can really provide us the high per-
formance pre-trained weights for downstream tasks.
The MAE model achieved moderate results, with an
accuracy of 0.66 and F1-score of 0.65. This might
be due to the fact that this self-supervised learning
method leverages an autoencoder for representation
learning, which may not be as effective as other meth-
ods for complex image-based tasks such as room type
classification. Although not as perfection as DINO
v2, SimCLR also achieved high scores. This could
due to its contrastive learning technique, which is ef-
fective at learning rich feature representations from
unlabelled data. Still, the high scores warrant a check
for overfitting. SimCLR with ViT encoder trained
on CIFAR10 had the lowest scores, our hypothesis is
that since we trained the ViT based encoder on top
of CIFAR10 dataset, it only has 32 x 32 resolution.
However, the input for ViT requires larger images,
which is 224 x 224 resolution images. Resizing the im-
ages from 32 x 32 to 224 x 224 can lead to losing valu-
able information, When you resize such small images
to a larger size, it may introduce blurriness or other
distortions that affect the image’s key features, lead-
ing to the lower performance you observed. Another
reason is transformers can be powerful, but they of-
ten require large amounts of data and can be more
challenging to train. The reduced performance could
be due to the limited amount of data (50,000 images
of CIFAR10) or insufficient training time (50 epochs
might not be enough for the ViT to fully learn).

In order to test our hypothesis for low performance on
ViT based encoder of SimCLR which trained on CI-
FAR10 dataset. We use the same model architecture
to train on the validation set of ImageNet. As for the
results from training the same ViT-based SimCLR
model on the ImageNet validation set, the increase
in accuracy and F1-score supports our hypothesis.
Given that the ImageNet dataset’s image size is nat-
urally compatible with ViT, it makes sense to see
better performance with this dataset. Although the
improvements seem marginal, they do indicate that
ViT-based models perform better on larger, high-
resolution images, which aligns with their design in-
tention.

However, one important consideration is that the Im-
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Accuracy F1 Score Prec Score R Score
MAE 0.656 0.653 0.661 0.656

DINO v2 1.00 1.00 1.00 1.00
SimCLR 0.98 0.98 0.99 0.97

SimCLR(ViT CIFAR10) 0.52 0.49 0.49 0.49
SimCLR(ViT ImageNet) 0.55 0.54 0.53 0.54

Table 1: The Results for Room Type Classification

ageNet validation set is still relatively complex and
diverse compared to the CIFAR10 dataset, which
could present additional challenge to the model’s
learning process. Training ViT models effectively of-
ten requires large-scale datasets due to the model’s
capacity for learning from large amounts of data. De-
spite this, our experiment provided useful insights
into how ViT performs under different data condi-
tions.

These results provide valuable insights into how dif-
ferent self-supervised learning methods and encoders
perform on various datasets. More importantly, they
highlight the importance of considering dataset char-
acteristics, such as image size and complexity, when
choosing a model or encoder for your task.

7 Conclusion and Future Work

In this work, we did a comparison on 5 different pre-
trained weights (MEA, DINO v2, SimCLR with CI-
FAR10 based encoder, SimCLR with ViT based en-
coder that trained with CIFAR10 dataset, and Sim-
CLR with ViT based encoder trained on ImageNet
validation dataset) on room type classification. We
carefully study the difference of each model and rea-
sons for why each of the above pre-trained weight
leads to the shown results.

For future works, we would like to try out masked au-
toencoders on SimCLR and train it on both CIFAR10
and ImageNet validation datasets and compare with
the results we obtained above. Moreover, we would
also want to do segmentations on top of room classifi-
cation, which is to divide a room into different parts,
including ceilings, floors, and walls. This will help us

fulfill the initial idea of holding an automating house
appraisal score calculations, which is the score shown
on appraisal report for the bank to determine how
much home financing they would provide to the new
house owner.
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Moutakanni, Huy Vo, Marc Szafraniec, Vasil

8



Khalidov, Pierre Fernandez, Daniel Haziza,
Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without
supervision. arXiv preprint arXiv:2304.07193,
2023. 2

[4] Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representa-
tions, 2020. 2

[5] Alexey Dosovitskiy, Lucas Beyer, Alexan-
der Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image
recognition at scale, 2021. 2

[6] Mathilde Caron, Hugo Touvron, Ishan Misra,
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